Определение крутящих моментов и построение эпюры

2010-03-12

Кручение стержня вызывается парами сил (сосредоточенными или распределенными), плоскость действия которых перпендикулярна продольной оси стержня. При кручении в поперечном сечении стержня возникает лишь один силовой фактор – крутящий момент Mк.

Согласно методу сечений величина и направление крутящего может быть найдены из уравнения равновесия моментов относительно оси стержня, составленного для оставленной части. То есть, крутящий момент в сечении численно равен алгебраической сумме моментов пар сил, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси стержня.

Правило знаков для крутящих моментов.

Правило знаков для крутящего момента Крутящий момент считается положительным, если при взгляде на сечение со стороны внешней нормали он поворачивает сечение по ходу часовой стрелки и отрицательным — в противном случае.
При построение эпюры крутящих моментов положительные значения откладываются вверх от горизонтальной базовой линии, а отрицательные – вниз.

Правило знаков для крутящего момента (смотрим в торец бруса) Это правило знаков условное и не совпадает с принятыми правилами знаков моментов, углов поворота в теоретической механике и математике, поскольку связано не с системой координат, а с видом деформации оставленной части.

Крутящий момент для сечения можно выразить так: $$M _к(x) = \sum M _{кi} + \sum \int m _i(x)\cdot dx$$

Кручение бруса

Распределенный крутящий момент m может быть постоянной или переменной интенсивности. Для постоянного распределенного момента m это выражение примет вид: $$M _к(x) = \sum M _{кi} + \sum m _i(x)\cdot (x- L_{mн}) - \sum m _i(x)\cdot (x- L_{mк})$$

где L и L – расстояние от начала координат до начала и до конца распределенного момента соответственно.

Дифференциальная зависимость внутренних усилий от распределенной нагрузки m:

dMк = m·dx

Общий порядок расчета и построения эпюры.

  1. Намечаем характерные сечения стержня.
  2. Определяем крутящий момент в каждом характерном сечении.
  3. По найденным значениям моментов строим эпюру.

Построение эпюр крутящих моментов (пример)

Построить эпюру крутящих моментов для жестко защемленного стержня

Кручение бруса: исходные данные Пусть прямолинейный стержень нагружен внешними сосредоточенными крутящими моментами Mкв1=-30кН·м, Mкв2=50 кН·м, и распределенным моментом m1=10кН. Реакции левой опоры можно не определять, т.к. в этом примере можно ограничиться рассмотрением лишь сил, приложенных к правым оставленным частям (справа от сечений).

1. Число характерных сечений — 6
Для заданного консольного стержня вычисления удобно вести, идя справа налево, начав их с 1–го сечения.

2. Проведем сечение 1. Определим крутящий момент в текущем сечении:

Mк1= Mкв2= 50 кНм

3. Проведем сечение 2. Отбросим левую часть, заменим ее действие крутящим моментом Mк2 и составим уравнение равновесия в моментах относительно оси бруса. Из уравнения равновесия получаем выражение для крутящего момента в сечении 2:

Mк2 = Mк1 = Mкв2 = 50 кНм

3. Проведем сечение 3, отбрасываем левую часть, составляем уравнение равновесия и получаем:

Mк3 = Mкв2 – m1*4 = 50 – 10*4 = 10 кНм

4. Аналогично для сечения 4:

Mк4 = Mк3 = 10 кНм

5. Также для сечения 5:

Mк5= Mк4-Mкв1= 10 – 30 = -20 кНм

6. Для сечения 6:

Mк6= Mк5 =-20 кНм

7. По полученным значения строим эпюру крутящих моментов (см. рис.).

Скачок на левом конце эпюры дает величину опорного момента (реактивного момента в заделке) Mк6, так как реактивный момент – это внутреннее усилие, действующее в поперечном сечении, где соединены торец стержня и заделка.

Правила контроля правильности эпюр крутящих моментов

Для эпюр крутящих моментов характерны некоторые закономерности, знание которых позволяет оценить правильность построений.

  • Эпюры крутящих моментов всегда прямолинейные.
  • На участке, где нет распределенных моментов, эпюра Mк – прямая, параллельная оси; а на участке с распределенными моментами – наклонная прямая.
  • Под точкой приложения сосредоточенного момента на эпюре Mк будет скачок на величину этого момента.

Дополнительно

Еще один вариант построения эпюры крутящих моментов с использованием компьютера найдете на этой странице.

Пример из пособия МИИТ Построение эпюры крутящих моментов (формат pdf).

1 В технике употребляется терминология «винт с правой резьбой» или «винт с левой резьбой». На винт с правой резьбой гайка навертывается при вращении по часовой стрелке (т.е прикладываем положительный момент Mк ), а свинчивание гайки происходит при вращении влево (т.е прикладываем отрицательный крутящий момент ).



метки: ,

Последнее обновление: 13/03/2010; #69

категория: ,